
Tensor Virtual Machine
Chen et al.
Presented by Sultan Durrani, Ryan Ziegler

Agenda
● Background and Motivation
● Machine learning compilers
● Existing Work Halide
● TVM design and optimizations
● Experimentation and evaluation
● Strengths and Weaknesses
● Future directions

How do (CPU) compilers work?
● “Lowerˮ high-level (i.e. C) code into basic blocks
● A basic block contains no control flow
● Basic blocks are connected by edges representing control flow
● We can follow these edges to trace dataflow
● SSA IR: values are written to exactly once
● Optimization passes transform the IR while preserving program semantics

Compilers, more generally
● Take an input program, convert it into some representation
● Transform the representation to improve performance while preserving

semantics
● Output code (i.e. ASM
●

Source C Program

Compiled with O3

Compiled with O0

Traditional Compilers

Machine Learning/Deep Learning Compilers

Challenges with Machine Learning compilers

● Need to learn how to use new hardware features and accelerators. For
example H100(hopper) introduced wgmma instructions. Different from
mma

● Large search space for optimization
Need to produce efficient code without manual tuning (huge
configuration space)

TVM Overview
● TVM takes the IR of ML frameworks

and generates a compute graph
● The compute graph contains

operators as nodes and edges
between them representing data
dependencies

TVM Optimizations Overview

● Optimizing Tensor Operations
● Optimizing Computation Graphs
● Automating Optimizations with ML cost model

Halide
● Problem: highly parallel matrix operations are difficult to express

Naive image blur

Hand-optimized blur

Halide
● Solution: separate the algorithm from the schedule (tiling behavior,

vectorization [width], loop ordering, etc)
● Halide takes an algorithm and schedule, and generates code implementing

the schedule

Why Halide?
● Itʼs easier to optimize an algorithm decoupled from an execution schedule
● Algorithms can be expressed more concisely

Why not Halide?
● Execution schedules have a high impact on algorithm runtime
● Difficult to optimize ML because schedules are not graph-level (i.e. cannot

use schedules for fusion)
● Lower-level: C embedded DSL

TVM Tensor Expression DSL

Cooperation
● Traditional nested parallelism: threads do not access one anotherʼs memory
● Cooperative parallelism: all threads fetch data they all need, allows for

sharing common data
● TVM implements memory scopes: a compute stage can be marked as

shared, and the compiler will generate cooperative code

Tensorization
● This is analogous to vectorization on SIMD architectures
● Input instructions are multi dimensional which dictate specific layouts
● Not restricted to a fixed set of primitives, each DL accelerator could potentially have their own

flavors of Tensor instructions
● TVM makes tensorization extensible, decouple hardware intrinsic from schedule
● Adds a tensorize primitive to make use of hand crafted micro kernels

Explicit Memory latency hiding
● Refers to overlapping memory operations with

computations
● In CPU, can be achieved via hardware

prefetching or SMT
● In CUDA, we have async memory copies TMA

on H100
● TVM adds virtual threading to transform the

program to a single instruction stream

Computational graph Optimizations
● Operator implementations are unspecified
● Only: inputs, operations, dependencies
● All dimensions typically known statically
● A computation graph is analogous to a Halide algorithm

Operator Fusion
● Operator fusion refers to combining multiple operators into one
● Operators are fused following four rules:

○ Injective operators can be fused
○ Reductions may be fused to an injective operator
○ “Complexˮ operators (i.e. conv2d) can be fused with element-wise maps after
○ “Opaqueˮ operators (i.e. sort) cannot be fused

Constant folding and data layout transformation
● Constant folding: if some operators have static

inputs, compute their output at compile time
● Data layout transformation: adjust how tensors are

stored (row major, blocks, …) depending on target
device(s)

● Memory planning: adjust memory layout based on
characteristics of target device CPU, GPU, custom)
to ensure locality

Cost model
● How do we decide what optimizations to make?
● Solution: use ML to determine the projected cost (positive or negative) of

making a specific optimization
○ Use simulated annealing to perform optimization using model as a cost metric

Experimentation

● TVM workload optimization over multiple platforms
● TVM vs existing DL frameworks
● TVM support for new DL operations and workloads
● TVM support for specialized accelerators

Server class GPU

Embedded CPU

Embedded GPU

TVM showcase on a custom accelerator

Strengths
● Can generate code for many backends including new accelerators (ex FPGA

based one)
● Open source implementation
● Supports popular frameworks like pytorch, tensorflow etc
● Demonstrates performance at par or even better in cases than hand tuned

kernel libraries

Related Work
● Halide
● TensorFlow XLA
● FFTW and ATLAS

Limitations of TVM
● ML cost model requires training, which can be slow or costly

○ Optimization search space is extremely wide

● For better performance, more sophisticated operator fusion decision making
required.

● Fragmented code base. Model definition in python while operators in
Cuda/C, programmer needs to be familiar with both and also have to learn
TVM expression

● Advanced optimizations require understanding of TVM IR, no easy way to do
operator extensibility

Future Work
● Improve Graph level optimization by using a using some better heuristics for

Operator Fusion. Can do static analysis on the kernels and keep note of
instructions, blocks, loads, math functions, barriers etc

● Work on some pruning strategies to reduce the search space for the ML cost
model

● Support for heterogeneous optimizations. Graph partitioning across multiple
different devices, and fuse + map operators based on device affinity

